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Abstract— The purpose of this paper is to calculate the bone fluid pressure in the lacunar—canalicular
porosity of the cortical bone matrix induced by functional mechanical loading and compare it with
that induced by the blood pressure differences. This problem reduces to the problem of determining
the bone fluid pressure in a representative axially compressed osteon which is approximately an
annular cylindrical structure. Two available poroelastic approximations, a beam analogy model
and a single osteon model, are compared and discussed. We find that : (1) at the lacunar—canalicular
porosity of a typical load-carrying long bone, normal physiological loading induces a bone fluid
pressure that is at least 40 times larger than that induced by the blood pressure differences ; (2) the
solutions of the beam analogy model and the single osteon model approach each other as the
exterior-to-interior radius ratio of the osteon approaches one. € 1998 Elsevier Science Ltd. All
rights reserved.

INTRODUCTION

We may say that the earth has a spirit of growth, and that its flesh is the soil; its bones are
the successive strata of the rocks;...its cartilage is the tufa stone; its blood the veins of its
waters. From the Codex Leicester, Leonardo Da Vinci.

A mature cortical bone matrix has a lamellar structure. These lamellae are arranged
in either parallel shape or closely-adjoined concentric shape. Each multilayered concentric
cylinder is called an osteon, or a Haversian system. An average osteon is about 250 ym in
exterior diameter, 50 um in interior diameter, and 5 mm in length. Sections of cortical bone
that are made from parallel lamellae are called lamellar bone, and those from osteons are
called osteonal bone, which occupy most of the cortical volume. Each osteon is a structural
entity, and its exterior boundary is often called the cement line. Each osteon has a central
lumen that may house blood vessels and nerve fibers.

Compared with the lifeless rock, live cortical (compact) bone is a much more dynamic
structure since it is under constant remodeling. It is thoroughly vascularized, innervated,
and cell proliferated. The seemingly very dense matrix of the cortical (compact) bone
actually has several levels of porosity associated with it that are filled with fluid. Generally
speaking, these levels can be categorized, in descending orders of lengthscale, into (1)
vascular level; (2) lacunar—canalicular level; and (3) mineral crystal level. The vascular
level is associated with the channel spaces that accommodate the blood vessel network
(and the usually concurrent neural network) in the bone matrix (Haversian canals and
Volkmann’s canals). These channels have a characteristic diameter of about 50 um (varying
from 50-170 um, Atkinson and Hallsworth, 1982 ; Cooper et al., 1966). The lacunar—
canalicular level is associated with the labyrinth spaces that accommodate the bone cell
network in the bone matrix. A lacuna is the roughly ellipsoidal space (about 8 um long
axis, 4 um short axis) that houses an osteocyte body, and a canaliculus is the microtubular
space (0.1-0.35 pum diameter, Atkinson and Hallsworth, 1982) that houses one of the
many thin osteocytic processes protruding from their main osteocyte body. Processes from
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neighboring osteocytes connect to each other through gap junctions to form a cellular
network. On the lowest mineral crystal level, in the mineralizing process of the bone matrix
the miniature crystalized mineral fronts push into micropores that were originally occupied
by bone fluid. The left-over fluid spaces (generally thought to be connected) mingled with
the mineral micro-crystals and collagen fibers, etc., provide the lowest porosity. Depending
on the extent of mineralization, the size of these micropores can vary from 10-300 A
(Holmes et al., 1964).

Load-enhanced fluid movement within and between these three levels of porosity are
very important to bone biology proper and to the mineral metabolism of the whole body.
However, due to the structural difficulties involved with live bone experiments, many basic
questions about the fluid movement in bone are still in debate. For example, it is still not
clear to what extent the bone fluid at the mineral crystal level is free to move. Neuman and
Neuman (1958) suggested that the fluid there is largely bound to the matrix and not likely
to be driven to move by external loading, which means that it can be treated as a fixed
constituent of the solid matrix. (However, since the fluid phase there is continuous, it may
accommodate diffusion within it.) On the other hand, the vascular level porosity is most
likely a very low pressure system, with a typical capillary pressure ranging from 15-60
mmHg (Brookes, 1971). The external loading would not have very much effect on its bulk
amplitude since the load-driven pressure change there will relax almost immediately due to
its large pore size and its connection to the medullary canal. The only physiologically
important load-induced fluid pressure change will be at the lacunar—canalicular level. Load-
induced fluid movement (driven by the load-induced fluid pressure gradient) is in direct
contact with the osteocytes, hence is essential to the functioning of them. For example, it
is our premise that the load-induced weak electrical potential (streaming potential, about
1.0 mV across the annular thickness of an osteon, Starkebaum et a/., 1979) is due to the
movement of the electrolytic bone fluid relative to the charged solid—fluid interface in the
lacunar—canalicular space.

The purpose of this paper is to calculate the load-induced bone fluid pressure at the
lacunar—canalicular level, using poroelasticity theory (Biot theory, Rice and Cleary, 1976).
Under either axial loading or bending, each osteon will experience an axial compression or
tension due to its small size. Hence our problem is reduced to calculating the fluid pressure
in a representative osteon under axial loading.

POROELASTICITY

Constitutive relations
The Rice-Cleary form of constitutive relations for poroelasticity are (Rice and Cleary,
1976),
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There are four material constants in the above constitutive equations: G, v, B, and v,. G
and v are, respectively, the shear modulus and Poisson’s ratio when the medium is deformed
under the “drained” condition, i.e., when the medium is deformed while maintaining a
constant pore fluid pressure. The opposite case is the “undrained” deformation which
corresponds to the case when there is no fluid transport between the elements of the medium
(e.g., when the time scale of the loading is too small), Ay, = 0. The compressibility coefficient
B and the undrained Poisson’s ratio v, are defined in terms of the material properties by
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where K is the “‘drained” bulk modulus K = 2G(1 +v)/3(1 —2v), K; is the bulk modulus of
the fluid where we have set K, K, and K{ of Rice and Cleary (1976) equal, with no loss of
generality to our formulation and solution.

The stress—strain relations (1) can also be written as
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T,=2GE;+ <K“ ?) 0, By —{pdy, &)

where (cf e.g., Rudnicki, 1985)
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Field equations
D’Arcy’s law is written in the form

U; = —pok Op[ox;, (7

where u, is the fluid mass flow rate per unit area in the x; direction, k is the permeability
and k = k/u where u (Pas) is the viscosity of the fluid and k (m?) is the specific permeability.

The stress/pore fluid pressure conditions of compatibility are given by Rice and Cleary
(1976),
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A useful relation between T}, and p is obtained by contracting eqn (8), thus
V2 (Tkk +Ap) = 0, (9)
where
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Another relation between T, and p can be obtained from the fluid mass conservation
equation Ju,/éx;+ 6{/0t = 0, which yields
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Equations (8) and (11) constitute a set of seven coupled equations for the seven scalar
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unknowns T, and p. These equations are those used in Zhang and Cowin (1994) to solve
the problem of a poroelastic beam under combined oscillatory axial compression and
bending.

FORMULATION

Beam solution

The formulation and an analytical solution for a poroelastic beam (Fig. 1), under a
combined loading of an oscillatory axial force N, = Nysinwr and an oscillatory bending
moment M. = M,sinwt, have been given by Zhang and Cowin (1994). In this paper the
evaluation of the various poroelastic material constants for the cortical bone at the lacunar—
canalicular level given in Zhang and Cowin (1994) will be employed. The non-
dimensionalization (cf Fig. 1) is,

y & IM 2w
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¥ = 3/B—A. The boundary leakage condition at y = +d (the upper and lower surface of
the beam) is

oP _
af(f, 1) = FnP(r. £ 1) ‘ (14)

where # is the leakage coefficient, which is a measure of how free is the pore fluid permitted
to leak through the upper and lower surfaces of the beam. # = co means there is no
resistance whatsoever to the fluid leakage (equivalently, P(zr, 1) = 0), and 5 = 0 means
there is no leakage whatsoever (equivalently, dP/2Y = 0 at Y = F1). Notice that in this
formulation:

(1) The upper and lower surface have the same leakage coefficient, hence if the bending
moment vanishes, M, = 0 (M = 0, pure compression case), the problem is symmetric
with respect to the midplane Y = 0. Thus the solution to the pore fluid pressure is
also symmetric to Y = 0 plane, or ¢P/0Y = 0 at Y = 0. This means that in the pure
compression loading scenario, the midplane of the beam is also a no-leakage plane.

(2) The solution satisfies both the mass conservation equation, eqn (11), and the com-
patibility equation, eqn (8).

As we discussed in the Introduction, calculation of the bone fluid pressure in the
osteonal cortical bone at the lacunar—canalicular level is reduced to the problem of cal-
culating it in an axisymmetric, cylindrical bony substructure called an osteon subjected to
axial compression. Ideally, the exterior boundary of an osteon (cement line) is a no-leakage
boundary. In contrast, there seems to be a direct connection between the central lumen of

Fig. 1. The beam and the coordinate system employed.
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Fig. 2. The osteon and the coordinate system employed.

an osteon and the canaliculi leading to it (Kelly, 1983). This suggests a free leakage
condition along the lumenal surface. Recall in the beam configuration we discussed in the
above paragraph, we have the same leakage scenario along the half-thickness of a purely
compressed beam with = oo. Harrigan and Hamilton (1993) proposed using the solution
of pore fluid pressure in a poroelastic beam (with a thickness twice the annular thickness
of an osteon) to simulate that generated in an osteon under the same compressional loading
(beam analogy). This beam analogy (Fig. 3) is also used in Zhang et al. (1997) to quantify
the load-induced pore fluid pressure and strain generated streaming potential (SGP) along
the annular thickness of an osteon, using the solution from Zhang and Cowin (1994).

Single osteon solution

Zeng et al. (1994) derived a solution of the bone fluid pressure in a single annular
cylindrical osteon under an oscillatory compression (Fig. 2) based on a poroelastic approach
and the following two assumptions:

(1) the uniform total axial stress is given by 7. = — Tysin®¢ for every point (all other
stresses are neglected) ;

(2) the influence of the compatibility equation, eqn (8), is small and hence negligible
compared with the mass conservation equation, eqn (11).

T, is the amplitude of the axial total stress T. and w is its angular frequency. In the
single osteon shown in Fig. 2. r is the local osteonal radius, measured from r = r; at the
wall of the osteonal lumen to r = ry at the cement line, r;, < r < r,. L = ry—r; is the annular
thickness of the osteon. If we choose the following nondimensionalization
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where ¢, is called the pore fluid pressure relaxation time across distance L (Zhang et al.,
1997), the osteonal solution should be analogous to the beam solution if we let 4 = L and
Ny = 2dT, in eqn (13) and assuming the same material properties for both the beam and
the osteon. This is so because now the two loading cases have the same material, same
leakage condition, same diffusion distance (distance from the no-leakage point to the free
leakage point), and under the same extent of nominal axial loading. In terms of the
configuration, the only difference is the geometry effect : one is a rectangular thin beam and
the other is an axisymmetric hollow cylinder. In terms of the solving processes, the beam
solution starts with a known axial external force (an integration of the axial total stress)
and considers both the fluid mass conservation equation, eqn (11), and the compatibility
equation, eqn (8), while the osteon solution starts with a known axial total stress for
every spatial point, neglects all other stress components and considers only the fluid mass
conservation equation, eqn (11). Table 1 summarizes the differences between the two
approaches.

The solution for the nondimensional bone fluid pressure within an osteon, P(¢, R),
can be rewritten in real form from eqn (19) of Zeng ez al. (1994), as

o

P
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Fig. 3. The beam analogy : correspondence between the beam solution and the single osteon solution.
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Table 1. Comparison between the two different approaches in solving bone fluid pressure in an osteon under axial

compression
Beam solution Single osteon solution
Comparison (Zhang and Cowin, 1994) (Zeng et al., 1994)
Material properties (same) Cortical bone matrix Cortical bone matrix
Leakage conditions (same) One end free leakage, other end One end free leakage, other end
no leakage no leakage
Diffusion distances (same) d = L = annular thickness of L = annular thickness of osteon
osteon
Geometries (different) Rectangular thin beam Axisymmetric hollow cylinder
Major assumptions (different) Known pure axial force: Known axial total stress
N.= —Ngsinwt, M. =0 T. = — T,sinwt, all other
One-dimensionality stresses = 0
Set of governing equations Fluid mass conservation Fluid mass conservation only
(different) Compatibility equation
Loading stresses (same) Nyi2d Ty = Nyj2d
P(1}. R) = (Ao bery(\/ TR) — Ayybeig(y/ TR)

+ By kery(y/TR) — By keiy(/TR)) cos Tt*

¥ .
—gra! + Agsbery(\/ TR) + Ag beio(/TR)
+ Byykero(/ TR) + By, keiy(\/ TR)) sin Tt (16)
where
v (=8 ker,(\/ TRo) — drkeiy (/ TRy)), (17)
02 52 i\ (/ TRo) +81ker, (\/TRy)), (18)
By, = (/TR +8:beis ( TRo)), (19)
By, = 57 (5 beiy(\/TRy) —8,ber, (/ TRy)), (20)
and

8, = —keiy(/ TRy)bery(y/ TRy —ker,(\/ TRy)beiy(\/ TR,)
+keio(n/ TRYber, (/ TRy) + kero(y/TR)bei (\/TRy),  (21)

ker,(/ TRy )ber(/ TR, —kei, (/ TR )beio(\/ TR;)
—kero(s/ TR)ber, (/ TR) +keio(/ TR)bei, (\/TR,).  (22)

9,

ber,, bei, ker,, kei, i =0,1, are Kelvin functions. A and ¥ are nondimensional material
parameters describing the porous media. For the bone matrix we find A = 0.35and ¥ = 5.3
(Zhang and Cowin, 1994).
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Comparison between the two solutions
In order to compare with the one-dimensional beam case, we introduce a spatial
variable Y along the radius of an osteon, where

- R—R,
r=r _,_R

Y=1—
Fo—F; R,—~R/’

R=(R,—R)(1—-Y)+R, Yel0,1]. (23)

In this way we can plot P(#}, Y) obtained from eqn (16) and P(r, Y) obtained from the
beam analysis (Zhang and Cowin, 1994) together for comparison.

In order to characterize the geometry of an osteon, we now introduce a parameter
0 = ry/r; = Ry/R,. 6 (8 > 1) is the radius ratio between the radius of the exterior rim of a
hollow cylinder and that of the interior rim. A very large d corresponds to the case when
the radius of the central canal of the hollow cylinder is very small compared with its exterior
radius (point hole problem). d — 1 corresponds to the case when the radii of the two rims
are so close that you can almost cut the ring open and extend it to get a rectangle. For a
physiological osteon, r; varies from 2.5-85 um (Atkinson and Hallsworth, 1982), with a
probability-weighted average (expected mean) at about 25 ym. r, varies from 100-150 ym
(Martin and Burr, 1989) with an average at about 130 um; we will see that the value of ¢
varies from 1.1-60 with a probability-weighted average (expected mean value) at about 5.2,
assuming that the two radii, r; and r,, are two independent random values. The reasons for
this independence are, first, r; is contributed by the tunneling effort of the bone-eroding
osteoclasts and r, by a separate group of bone-building osteoblasts. Secondly, the time lag
between the initiation of tunneling by osteoclast and the initiation of refilling by osteoblasts
is about 30 days (Martin and Burr, 1989).

Stress decomposition factors
Equation (5) can be rewritten as

T, =08 —{pd, =0 +6", 24

where ¢ are the constituent stresses on the solid phase which can be interpreted as the
portion of the total stress T); that is supported by the solid part of the medium. In
conventional soil mechanics, o) are known as the effective stresses (Nur and Byerlee, 1971).
The constituent stress on the fluid phase is hydrostatic, so we use a single expression ¢'° to
denote it. We use S, S¢ and S© to denote the nondimensionalized T}, ¢ and ¢'” (Zhang
and Cowin, 1996).

In respect to the bone problem at hand, the axial total stress T; is the dominant stress
component since it is in the direction of our external loading. It is of interest to know how
T,; is decomposed at the non-leakage point of the osteon (namely the cement line, ¥ = 0).
Since T3, 05, 67 are oscillatory, we can define the stress decomposition factors as

(8N (8
b= ((5(353)[;1)1/70, h. = ((833)01>Y=0’ )

where (),. is the average operator over the time period,

T 2T
Oar = ﬂj [ldt. (26)

0

B, called the stress decomposition ratio, can be interpreted as the relative ratio of the two
portions of the total axial stress (one is the fluid partial stress and the other is the solid
partial stress). B, called the stress contribution factor of the bone fluid pressure, is roughly
the percentage of the total axial stress that is supported by the pore fluid.



Bone fluid pressure due to mechanical loading 4989

PARAMETER EVALUATION

As we mentioned before, our problem is focused on treating the cortical bone matrix
as a poroelastic medium with the lacunar-canalicular level permeability. Balance between
blood and the surrounding interstitial tissue’s hydrostatic and oncotic (osmotic) pressures
across the blood vessel wall (Starling’s law) determines the bone fluid pressure in the higher
level vascular porosity. Parameter evaluation of the biological systems varies greatly with
specimen selection and the parameterization methodology. Detailed characterization of the
poroelastic parameters of the cortical bone matrix at the lacunar—canalicular system can
be found in Weinbaum et al. (1994), Cowin et al. (1995), Zhang and Cowin (1994), Zhang
et al. (1997, 1998). Key parameter evaluation can be summarized as follows: B = 0.53,
A=035¥=53{=027,¢c=376x10"" m%s, r,= 25 ym (varying from 2.5-85 um),
ro = 130 um (ranging from 100150 um), é = 5.2 (varying from 1.1-60) and T, = 9 MPa
for 1000 microstrain oscillatory compressive loading at 1 Hz.

RESULTS

In order to summarize our results, we can write the pore fluid pressure calculated from
the single osteon approach as

P(tE, Y,0) = Puup(T, Y, 8) sin(Ttf—a), o=a(T,Y,9), 27)
and that from the beam approach as
P(1,Y) = Pupo(T, V) sin(Tr—0), a=o(T, 7). (28)

Figure 4 shows the comparison of the behavior of the magnitude of the load-induced
fluid pressure at the maximally pressurized point P,,,,(7,0, ) or P,.,,(T,0) (or no-leakage
point: midplane of the beam in the beam approach, cement line in the single osteon
approach) as a function of the nondimensional frequency 7 calculated from the analytical
solutions based on the beam approach and the single osteon approach. We choose different
values of d in the single osteon approach to show the dependence of the solution on the
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Fig. 4. Dependence of the amplitude of the nondimensional load-induced bone fluid pressure at the
cement line, P, (7,0, ), on the nondimensional frequency T and the exterior-to-interior radius
ratio d.
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Fig. 5. Dependence of the phase angle of the load-induced bone fluid pressure at the cement line,
(7,0, ), on the nondimensional frequency T and the exterior-to-interior radius ratio &.
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Fig. 6. Spatial profiles of the phase angle of the load-induced bone fluid pressure when the non-
dimensional frequency T = 1 (5 Hz), x(1, Y, 8), for different values of the exterior-to-interior radius
ratio 8.

geometry of the hollow cylinder. Figure 5 shows the corresponding behavior of the phase
angle of the fluid pressure at the no-leakage point, «(7,0, 8) or (T, 0).

Figure 6 shows how the phase angles, «(7, Y, d) and «(T, Y), of the load-induced fluid
pressure varies with the spatial coordinate Y for different geometries and a representative
nondimensional frequency 7 = 1. The figure shows that the phase angle is essentially a
constant with respect to space in each geometry. In other words, at each spatial point along
the osteonal radius, the load-induced bone fluid pressure will attain its maximum value at
approximately the same time, even though each spatial point is entitled to have its own
phase of oscillation. What this means is that P, (7T, Y, d) and P, (T, ¥) profiles plotted
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Fig. 7. Spatial profiles of the amplitude of the load-induced bone fluid pressure when the non-
dimensional frequency 7 = 0.2 (1 Hz), P,,,,(0.2, Y, §), for different values of the exterior-to-interior
radius ratio é.
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Fig. 8. Spatial profiles of the amplitude of the load-induced bone fluid pressure when the non-
dimensional frequency T =1 (5§ Hz), P,u(1, ¥, ), for different values of the exterior-to-interior
radius ratio §.

in Fig. 7 are very similar to the real pressure profiles at the time ¥ = 0 point reaches the
maximum,

Figure 10 shows how the frequency-dependent behavior of the stress decomposition
ratio B, of an osteon, defined in eqn (25), varies as a function of the geometric factor J.
The same decomposition ratio is also plotted based on the beam solution (thick curve). As
a reference, the stress contribution factor of the pore fluid pressure, f3,, is also plotted for
the beam solution. Correspondent f, curves derived from the osteon solution are not
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Fig. 9. Spatial profiles of the amplitude of the load-induced bone fluid pressure when the non-
dimensional frequency T = 4 (20 Hz), P,,,(4, Y,d), for different values of the exterior-to-interior
radius ratio J.
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Fig. 10. Frequency-dependent behavior of the stress decomposition ratio of the axial total stress
defined in eqn (25), B,. The curve for the bone fluid stress contribution factor, f5,, derived from the
beam solution is also included for reference.

plotted, but their relative behavior with respect to their respective f§; curves are similar to
that between the f, and f, curves for the beam solution (data not shown).

DISCUSSION

We want to point out that even though we are discussing the solutions in the context
of a single osteon within a compact bone matrix, the same solution can also be used to a
long bone under uniaxial compression if we want to calculate the load-induced hydrostatic
pressure in the vascular porosity, since a long bone section can also be idealized as an
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annular cylindrical tube. It has been shown that the periosteum is a layer of relatively
impermeable membrane and the endosteal surface is perforated with centrifugal terminal
blood vessels branching out from the main nutrient vessels in the marrow cavity (Brookes,
1971; Kelly, 1983), hence the same leakage conditions that apply to a single osteon also
apply to a long bone section. However, the fluid pressure relaxation time in the vascular
porosity is several orders of magnitude lower than that in the lacunar—canalicular space
(see below). In the soil or rock mechanics context, the solution presented here may also be
useful in calculating fluid movement around a borehole or a well.

Relaxation times of the three levels of porosity

The pore fluid pressure relaxation time #, of a poroelastic solid cross a distance L can
be defined as 7, = L*/c [eqn(15)], c is the diffusion constant defined in eqn (12). In cortical
bone, we have three levels of porosity, so theoretically we should have three different values
of diffusion constants (with possible coupling between them) for each of them. From egn
(12), we see that at each level, the diffusion constant ¢ is equal to the permeability « at that
level times a factor that is related to the stiffness, the compressibility, and the solid-fluid
interaction of the poroelastic solid at that level. At the first level of analysis, let’s assume that
this factor is comparable for these three levels and focus our attention on the permeability.

If all the pores in the three levels of porosity are free from soft tissues, the permeability
is about proportional to the square of the pore size. Since the pore size ratios of the three
levels of porosity (crystal level, lacunar—canalicular level and vascular level) are about
1:10:2500, the permeability ratios are about 1:10%: 10° (100 A: 0.2 z: 50 u, Atkinson and
Hallsworth, 1982 ; Holmes et al., 1964). However, in Weinbaum er al. (1994), and later
papers, we postulate that there is a glycocalyx (GAG) cell coat on the plasma membrane
that fills the lacunar-canalicular space. The existence of this extracellular matrix will
decrease the permeability of the lacunar-canalicular level by about two orders of magnitude.
Hence, the permeability ratios of these three levels of porosity could be 1:1: 10°. However,
Neuman and Neuman (1958) pointed out that bone water at the crystal level is largely
bound to the crystal surface by a very strong electric attraction, hence not likely free to
move. (If this is true, the permeability ratios will be 0:1:10°) Based on this, in this paper
we only consider the load-induced bone fluid in the lacunar—canalicular porosity since the
vascular porosity serves as a low-pressure bone fluid reservoir.

Weinbaum er af. (1994) give a detailed description on how to evaluate the permeability
of the lacunar-canalicular porosity of the cortical bone matrix based on a three-step
hierarchical model. Base on this model, Zhang et al. (1997) estimated that the diffusion
constant ¢ = k (25.56 GPa) = 3.76 x 1077 m?/s. (Here k = k/u, k = 1.471 x 10* m?, if
u = 107% Pas.) Across a diffusion distance of L = 100 uym (typical annular thickness of an
osteon), the ideal pore pressure relaxation time 7, = L*/c =2.9x 107 s. Hence a 1 Hz
loading will correspond to a nondimensional frequency T = 0.2 [eqn (13) or (15)].

Influence of the geometry factor

The influence of the geometry factor represented by the exterior-to-interior radius ratio
4 of the annular cylinder can be best interpreted from Figs 4, 5, and 7. Figure 4 shows how
the amplitude of the load-induced pore fluid pressure at the no-leakage location (exterior
boundary of the osteon or the midplane of the beam), P,,,(T,0,9) or P,,,(T,0) in eqn (24)
or (25), changes with frequency 7. Each curve is plotted for one value of the geometry
factor 8, 6 = 1.1, 5.2, 11, 60. As we recall, é close to 1.0 corresponds to a thin-walled
annular cylinder and a very large é corresponds to an almost solid cylinder with a thin
central hole. For a physiological osteon, é varies from 1.1-60 with an expected mean value
of 5.2. As & approaches one, the osteon curves approach the beam curve. In Fig. 4, each
curve shows a typical behavior of a high-pass filter with respect to the nondimensional
loading frequency T for each value of 6. A high-pass filter is a concept of electronics which
means a device that lets through the higher-frequency components (with respect to a
threshold frequency) of an incoming signal and filters out the lower-frequency components.
This threshold frequency is also called the corner frequency, or cutoff frequency. A low-
pass filter is a device that does the opposite.



4994 D. Zhang et al.

We have shown in previous papers (Zhang ez al., 1997, 1998) that in transferring the
mechanical loading signal into its induced pore fluid pressure signal through the poroelastic
bone matrix, the ideal corner frequency for the high-pass filter cascade is related to #; ',
where 4, is the pore fluid relaxation time across a half beam thickness L, 7, = L*/c. Figure
4 shows that for an annular cylinder such as an osteon, the corner frequency is also related
to the geometry factor &, since the corner frequency decreases as & increases. The reason
for this is that as & = r/r; increases while L = r,—r, remains constant, the specific leakage
surface area (defined by 2nr,/n(r§ —r?) = 2/L(5+ 1)) decreases, hence the bone fluid pres-
sure becomes more and more difficult to relax. Hence the corner frequency for the pore
fluid pressure decreases. Another way of interpreting this is by defining an equivalent
diffusion distance. Even though the distance between the no-leakage point and the free-
leakage point is still L, due to the competing effect of the same amount of fluid running out
of smaller outlet area, the equivalent diffusion distance (probably related to &) is somewhat
larger than L. In the ideal beam case, the corner frequency is close to T =6 (which
corresponds to z; ' = 30 Hz).

Figure 5 shows the corresponding frequency-dependent behavior of the phase of the
load-induced pore fluid pressure at the no-leakage point (cement line and the midplane of
the beam), a(7, 0, ) and «(T, 0) in eqns (24), (25). Similar to Fig. 4, as § approaches 1, the
response of the osteon approaches the response of the beam. As § increases, the phase of
the load-induced pore fluid pressure keeps pace with the external load more quickly as the
frequency increases.

Figure 7 shows the amplitude profiles of the load-induced pore fluid pressure for one
fixed value of the nondimensional frequency T = 0.2, P,,,(0.2,Y,d) and P,,,(0.2,7).
Again, we can see that as J approaches 1, the osteon profiles approach those of the beam.
For a very large J, P,,, not only operates at a higher magnitude but also has a quite
different profile compared with that of the beam. For example, at § = 60, most of the
pressure drop occurs near the free-leakage boundary Y = 1, while in the beam profile the
pore fluid pressure drops almost linearly across the thickness. Comparing Figs 7-9 plotted
for different frequencies, 7= 0.2, 1, and 4, we can see that the difference of the end values
(i.e. at ¥ = 0) between the beam solution and the large-d single osteon solution decreases
as T increases. At T = 4, the end value of the beam solution at ¥ = 0 and the single osteon
solution at y = 0 at all values of ¢ are about the same. However, the differences in the
profile shape for different values of ¢ still persist.

Magnitude of the load-induced bone fluid pressure and pressure differences

Bone fluid movement is driven by spatial bone fluid pressure differences. There are
two major sources of pressure drop in bone: the one generated by blood pressure and the
one generated by external loading. Since static load cannot produce a sustained bone fluid
pressure due to the bone fluid pressure relaxation, only dynamic loads are important in this
context.

From eqns (13) and (15), we can see that the dimensional pressure p equals the
nondimensional pressure P times 7T,/W, where T, is the amplitude of the externally applied
cyclic axial total stress and W is a material constant, ¥ = 5.3 (Zhang and Cowin, 1994),
The peak local strain magnitude measured in a variety of bones in a wide range of animals
during the extremes of functional activity is similar. This range is from 2500-3500 ustrain.
However, the local strain magnitude in the majority of bone tissue is 1000 ustrain or less
(Rubin and McLeod, 1995). Hence we choose a strain level of 1000 ustrain as the yardstick
for our parameter evaluation. Since the axial Young’s modulus for bone is about 18 GPa
(Cowin, 1989), the axial stress level is about 18 MPa. In other words, the cyclic stress varies
from 0-18 MPa under physiological loading, hence one-half of that range is 7, = 9 MPa.
(Here we shift the range of external stress from 0 to 18 MPa to —9 MPa to 9 MPa, to be
consistent with a sinusoidal external loading.) In humans, this level of stress occurs in a
femur under typical walking conditions at a frequency of 1 Hz. The maximum compressive
stress experienced by the human femur (located around the midpoint of the femur at the
medial side) during walking is about 13.52 MPa (Koch, 1917). Hence, in this loading
scenario, T,/¥ = 1.7 MPa.
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The value ¥ is a material constant that is, most importantly, a function of the ratio
between the compressibility (bulk modulus) of the bone fluid phase and that of the solid
phase in a poroelastic medium. Physically W represents the share of load that is assigned
to the fluid phase. In an idealized case when the poroelastic solid is under hydrostatic
compression, the share of loading is assigned to each phase based on their compressibility
(bulk modulus) ratio. A pore fluid of lower compressibility (higher bulk modulus) is
expected to share more of the load than that of a higher one. In the case of bone, the bulk
modulus of the solid matrix is about seven times larger than that of the bone fluid (Zhang
and Cowin, 1994).

From Fig. 7 (at T = 0.2, 1 Hz), we can see that for a typical osteon (§ = 5.2) the
maximum bone fluid pressure generated at the cement line is about 0.16 x 1.7 MPa = 0.27
MPa (about 2.7 atm or 1852 mmHg). Comparing the two curves for § = 5.2 in Fig. 9 (for
20 Hz) and Fig. 7 (for 1 Hz), we can see that at Y = 0 (cement line), the load-induced
nondimensional pressure magnitude P, at 20 Hz is six folds larger than that at 1 Hz. This
tells us if we are applying a 20 Hz oscillatory load T, (20 Hz) that is six folds lower than a
1 Hz load 7, (1 Hz), it will generate a same level of bone fluid pressure in an osteon. This
suggests that low-amplitude, high-frequency (15-30 Hz) loading such as that contributed
by muscle contraction is also important to bone fluid motivation and other bone fluid
related mechanisms.

Brookes (1971) estimated that the periosteal circulation is a low-pressure system similar
to that of the skin, with an intracapillary pressure at the periosteal surface of about 15
mmHg. At the endosteal surface, the intravascular pressure is of the order of 60 mmHg.
The pressure gradient across the cortical capillaries is therefore centrifugal, and is the
principal factor maintaining blood flow across the cortex of the diaphysis. Based on this
estimate, the total blood pressure difference across the cortex of a long bone is about 45
mm Hg. Since the capillary pressure within the osteonal lumen is probably below 15 mm Hg,
during normal physiological functioning, the load-induced bone fluid pressure difference
across the radius of a single osteon is 40 times larger than the blood pressure difference
across the whole cortex. This means that in a load-carrying bone, bone fluid movement in
the lacunar—canalicular space is dominantly driven by the external mechanical loading
instead of by the blood pressure difference. Since bone fluid movement at this level is very
important to the normal metabolism of the osteocytes embedded in the mineralized matrix,
our analysis might explain why live bone deteriorates so quickly after its loading level
decreases.

Stress-sharing capacity of the bone fluid pressure

As we have hypothesized, the bone fluid filled lacunar-canalicular space takes only
5% of the bone matrix volume (porosity = 0.05). As shown in Fig. 10, the stress con-
tribution factor of the load-induced bone fluid pressure calculated for the axial total stress
at the no-leakage midplane of the beam, §,, attains a plateau of 0.05 for 7> 6. As we
discussed in our previous papers (Zhang and Cowin, 1994, 1996), the coincidence of this
plateau value of §, and the value of porosity does not seem to be accidental. At high loading
frequency the pore fluid pressure does not have time to relax, hence the fluid phase deforms
as an integrated part of the solid matrix, and thus the total stress is shared between the
solid and fluid phases in accordance with their volume fractions.

It is of interest to note that the curves plotted in Fig. 10 look very similar to the
curves in Fig. 4. This is understandable since the solid partial stress is the dominant stress
component in the axial total stress. Since the stresses are nondimensionalized with respect
to the applied external stress [eqns (13), (15)], approximately speaking what are plotted in
Fig. 10 are just those in Fig. 4 reduced by a constant factor (about 0.1). However, there
are some small differences. Notice in Fig. 4, as § approaches 1, the curves obtained from
the single osteon solution approach the curve obtained from the beam solution. This is not
true in Fig. 10. There is a significant discrepancy between the f, curves obtained from the
single osteon solution and from the beam solution even as é approaches 1. The cause for
this could be a combination of the differences between these two solutions summarized in
Table 1. More specifically, the following two reasons may be the most significant :
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(1) In the single osteon solution the axial stress is assumed to be known, and the other two
total stress components (in the radial and hoop directions) are assumed to be zero.
However, in the case of the beam solution the total stresses are obtained as solutions
of the governing field equations. This could cause some discrepancy between the
calculated stress decomposition factors based on these two different approaches.

(2) In the single osteon solution, only the fluid mass conservation equation is considered,
while in the beam solution, both this equation and the stress compatibility equations
are considered.

These two differences in methodology do not lead to a significant difference in behavior
between the d-near-1 single osteon solution and the beam solution as depicted in Figs 4-9.
This tells us what is neglected in the single osteon approach is probably minor, at least for
the case of bone which has a very low porosity (5%) and a very stiff solid matrix. But the
differences mentioned as points (1) and (2) above can be demonstrated in the behavior of
the more subtle quantities such as §, or f§, defined in eqn (25), Fig. 10. However, the cause
for the discrepancy shown in Fig. 10 could be a combination of (1) and (2), hence it is
difficult to distinguish between these two effects.

Finally, it is interesting to point out that for both the single osteon and beam solutions
we find that §, &~ f,/(1+ §,). Only the §, curve for the beam solution is plotted in Fig. 10.
This relationship between f, and S, can be derived from our definition of the stress
decomposition factors in eqn (25).

CONCLUSION

Under physiological functioning, the load-induced bone fluid pressure in the lacunar—
canalicular porosity of a cortical bone matrix of a typical load-bearing bone is at least 40
times larger than that generated by the blood pressure difference. Hence the fluid movement
in this level is dominantly driven by the external loading, instead of by the blood pressure
difference.

In calculating the bone fluid pressure at the lacunar—canalicular level in an osteon, the
efficacy of using the beam analogy depends on both the loading frequency and the geometry
factor 8, which is the exterior to interior radius ratio of the osteon.

When § is close to one, the beam analogy can serve a very good approximation to the
solution for the annular cylindrical osteon in terms of matching both the end values and
the detailed spatial profiles. In terms of calculating the stress-sharing characteristics between
the solid and fluid phase, irreconcilable differences occur between the beam solution and
the single osteon solution even as é approaches 1. This may be caused by the differences in
methodology between these two approaches.

When 4 is very large compared to one, the beam analogy is a bad analogy in the low
loading frequency range (below 20 Hz), within which the geometry effect of fluid leakage
is significant. In the high loading frequency range (larger than 20 Hz), the beam analogy
can provide good estimation to the end values of the bone fluid pressure across the annular
thickness of an osteon, but fails to predict the detailed spatial profiles associated with large
o values.
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